Predictors of Electric Vehicle Adoption Intent in Rideshare Drivers Relative to Commuters

Jamie Rye, Ph.D. candidate Nicole Sintov, Ph.D.

The Ohio State University

Background

- Costs, functional qualities, etc., as well as psychological factors (what the vehicle signals) have been shown to predict EV adoption in the general public
- Rideshare drivers have been neglected in past research

Methods

Rideshare Sample: n = 136Commuter Sample: n = 378Recruited in LA through Rideshare Apps Image Recruited through Prolific Image Recruited through Recruited throug

- Similar surveys for both groups
- Measures:
 - EV adoption intent
 - Instrumental & Symbolic attribute perceptions

Instrumental Attributes

a = 0.61 😳

charge

• Characteristics of a vehicle regarding its functional and logistical properties e.g., **\$** COStS (purchase, charging, maintenance) range anxiety difficulty of charging Neither Strongly Somewhat Somewhat Strongly nor disagree Disagree disagree disagree agree agree If I owned an EV. I would often be worried about running out of

Symbolic Attributes

a = 0.92 😳

- Characteristics of a vehicle that signal to onlookers that the driver is
 Socially responsible
 - *B* environmentally responsible

technologically savvy

	Otro p cili i			agree			Chuck chuck
	disagree	Disagree	disagree	disagree	agree	Agree	agree
Driving an EV means that I care about the environment	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc

Noithor

Hypotheses

Instrumental attribute perceptions will have a stronger influence on EV adoption intent for rideshare drivers than for commuters

Symbolic attribute perceptions will have a weaker influence on EV adoption intent for rideshare drivers than for commuters

Results

- Significant difference in access to charging spot
- Marginal difference in maintenance cost comparison perceptions

Results

Instrumental Attribute Perception and Driver Type Interaction Regression

- Group difference in purchase cost perception on EV adoption intent
- No other interaction terms were significant. This partially supports for our hypothesis

	Unstandardized				
Model	В	Standard	t	р	
		Error			
(Constant)	3.445	0.981	3.514	< 0.001	
Driver Type	1.967	0.682	2.884	0.004	
Instrumental Attributes & Interactions					
Purchase Cost Comparison a	0.536	0.206	2.605	0.009	
Purchase Cost*Driver Type	-0.299	0.144	-2.082	0.038	
Fuel Equivalent Cost Comparison a	-0.045	0.157	-0.288	0.773	
Fuel Equivalent*Driver Type	-0.027	0.110	-0.245	0.807	
Maintenance Cost Comparison a	-0.304	0.168	-1.811	0.071	
Maintenance Cost*Driver Type	0.102	0.127	0.803	0.422	
Range Anxiety ^a	-0.205	0.134	-1.536	0.125	
Range Anxiety*Driver Type	0.050	0.097	0.512	0.609	
Difficulty of Charging a	0.008	0.109	0.077	0.939	
Difficulty Charging*Driver Type	-0.114	0.080	-1.424	0.155	
Limited Use Due to Charging Time a	-0.038	0.129	-0.292	0.770	
Limited Use*Driver Type	-0.089	0.092	-0.966	0.334	
Spot/Outlet Accessibility b	0.191	0.362	0.527	0.598	
Spot/Outlet*Driver Type	0.049	0.274	0.178	0.859	
F (15)		10).079		
R ²		0	.233		

Dependent variable: EV Adoption intent; ^a Lower scores = more favorable towards EVs. Driver Type coding: Commuters = 1; Rideshare Drivers = ^b 0=no, 1=yes.

Exploratory Multiple Regression Results for Each Sample

 Further supporting this hypothesis, more variance in EV adoption intent was accounted for by instrumental attribute perceptions for rideshare drivers compared to commuters

	Rideshare Drivers			Commuters			
	Unstandardized			Unstandardized			
Model	в	Standard	р	в	Standard	р	
		Error			Error		
(Constant)	7.380	0.514	< 0.001	5.412	0.415	< 0.001	
Instrumental Attributes							
Purchase Cost Comparison a	-0.062	0.109	0.569	0.237	0.087	0.007	
Fuel Equivalent Cost Comparison ^a	-0.099	0.084	0.240	-0.072	0.066	0.271	
Maintenance Cost Comparison	0 101	0.103	0 3 2 8	0 203	0.065	0.002	
Maintenance Cost Comparison*	-0.101	0.105	0.528	-0.203	0.005	0.002	
Range Anxiety ^a	-0.106	0.077	0.170	-0.155	0.054	0.004	
Difficulty of Charging a	-0.220	0.064	< 0.001	-0.106	0.044	0.016	
Limited Use Due to Charging Time ^a	-0.216	0.072	0.003	-0.127	0.053	0.017	
						0.000	
Spot/Outlet Accessibility ^b	0.289	0.223	0.197	0.240	0.139	0.086	
R ²		0.324			0.177		

Dependent variable: EV Adoption intent; a Lower scores = more favorable towards EVs. b 0=no, 1=yes.

Results \bigotimes^{\heartsuit}

- Significant group difference in symbolic attribute perceptions
- In other words, rideshare drivers perceived EVs as signaling social, environmental, and technological status to a higher degree than did commuters

Results \bigotimes^{\heartsuit}

 Symbolic attribute perceptions influenced EV adoption for both groups (β-0.63, p < 0.001), but more variance accounted for by symbolic attributes in commuter population

Results 🖉

Results of Multiple Regression Model Predicting Electric Vehicle Adoption Intent Unstandardized Model В Standard Error t p (Constant) 2.308 0.737 3.133 0.002 0.498 2.577 0.010 Driver Type 1.284 Symbolic Attributes 0.632 0.130 4.853 < 0.001 Driver Type x Symbolic Attributes 0.097 -1.9960.046 -0.194Instrumental Attributes 0.100 0.063 1.595 0.111 Purchase Cost Comparison a 0.048 0.280 Fuel Equivalent Cost Comparison ^a -0.052 -1.081 -0.127 0.051 -2.4830.013 Maintenance Cost Comparison a -0.118 0.041 -2.864 0.004 Range Anxiety^a < 0.001 -0.122 0.034 -3.623 Difficulty of Charging^a -0.145 0.040 -3.630 < 0.001 Limited Use Due to Charging Time^a 0.110 Spot/Outlet Accessibility b 0.234 2.140 0.033 F (10) 24.813 < 0.001 \mathbb{R}^2 0.330 < 0.001

Dependent variable: EV Adoption intent; ^a Lower scores = more favorable towards EVs. ^b 0=no, 1=yes. Driver Type coding: Commuters = 1; Rideshare Drivers = 2. All responses were given on 1 (lower) to 7 (higher) response scales, except for Purchase Cost Comparison, Fuel Equivalent Cost Comparison and Maintenance Cost Comparison. These three items were measured on a 1-5 scale ranging from 1 = much less, to 5 = much more.

- Group difference in impact of symbolic attribute perceptions on EV adoption intent, supporting our hypothesis

Summary

Instrumental attributes rated relatively similarly, but more predictive of EV adoption intent for rideshare drivers

Symbolic attributes rated more highly by rideshare drivers, but are more predictive of EV adoption intent for commuters

What does all this mean

 Reducing barriers to EV acquisition by subsidizing EVs or exploring rental models

 Identification of ways to increase charging accessibility for rideshare drivers

Maintenance cost educational campaigns

References

Thank You!

