

Co-Convened by

Environmental and Energy Stanford Policy Analysis Center

SCE Dynamic Rate Pilot How Flexible Pricing, Education and a "Robot" Reduced Energy Costs for K-12

November 15, 2023

Tanya Barham | CEO and Founder, Community Energy Labs Julie Hayes | Principal and Founder, JHC

California's renewable policies and system consequences

Figure 3-2: CAISO's outlook for projected curtailment and max 3-hour system ramp in 2030.24

We've now gone from the "duck curve" to the "canyon"

Anticipated Issues over the Next Decade

Increasing renewables penetration

- Increased curtailment
- Steeper ramps → reliability challenge
- Increased reliance on intermittent, use-limited supply → reliability challenge

Increasing electrification of end uses (buildings, transportation)

Increased cost of service due to higher load, if unmanaged

Increasing DER deployment

- Grid instability and increased cost of service, if unmanaged
- Fair compensation and cross-subsidy challenges

The SCE Dynamic Rate Pilot

A new way to price electricity

Automated Service Providers

SCE is working with **automated service providers (ASPs)** that have existing SCE (bundled) customers available with installed communicating enabling technologies <u>that are compatible with the TeMix software messaging platform</u>.

SUSTAINABILITY

1393 PJ (1.32 quads) of efficiency 200 GW of peak flexibility

\$15B per year to US ratepayers

DOE's Roadmap for grid-integrated efficient buildings (GEB),

Schools // Public Buildings // Colleges // Warehouses

EQUITY

Simple, affordable tool for managing energy costs, GHG, and reliability...

Pictured: Jamboree Housing Community Engagement in Santa Ana, CA

Pictured: Sonora Elementary in Costa Mesa, CA

PROBLEM

Existing solutions are too expensive, too complex and create nearly as many problems as they solve for the 90% who don't use controls.

KIM

District Superintendent

CAPEX
1 million ft.²
\$3M energy bill
Net Zero by 2025

GLENN
Facilities Manager

4-20 buildings
1-3 staff

↑ backlog

SOLUTION

CEL is an IoT & Software as a Service control platform for building operators who find it complex, frustrating and very expensive to meet long term building energy mandates using standard building control options.

- // Simple & intuitive
- // Single-day installation
- // Autonomous control
- // Future ready & Scalable
- // Works with solar & battery

CUSTOMER BENEFITS

COST SAVINGS OF 5-25%
GHG REDUCTION
REGULATIONS COMPLIANCE
LOW BARRIER CAPEX <\$20k
ROLIN UNDER 2 MONTHS

Hands-off Peak Load Shifting

PILOT PROCESS & RESULTS

// Smart T-Stat
// BACnet over IP

SETUP & INSTALL

// Audit ½ - 1 day // Install ½ - 1 day

TURN ON THE SYSTEM

// Pilot pays for 1 year // Then \$.06-.10 sq ft/yr

TESTING CAMPAIGNS

// 20-40% Demand Charge Reduction // Comfort Rules

GATHER.

CEL's friendly team gathers your building data.

TRAIN.

We train your virtual engineer to your specific needs based on findings from your data.

GO!

After six full days of training, your virtual engineer is ready to work!

COOLBEFORE

Figure 12: Summary of RTU operation in a default schedule day (Baseline); top: room temperatures with min/max comfort boundary (thermostat deadband adjusted setpoints) and outdoor air temperature, middle: RTU signals and override period (grayed area), bottom: building power and electricity price signal.

COOL AFTER

Figure 13: Summary of RTU operation in an MPC day (MPC); top: room temperatures with min/max comfort boundary (thermostat deadband is included) and outdoor air temperature, middle: RTU signals and override period (grayed area), bottom: building power and electricity price signal.

COOL SHIFT

Figure 17: Comparison between the load profiles in a Baseline and an MPC day with the utility tarrif

#BECC2023

HEAT

Thank You!

Tanya Barham – CEL tanyab@communityenergylabs.com

Julie Hayes – JHC julie@juliehayesconsulting.com

