

# DRIVING TRANSFORMATION

Behavior, Energy & Climate Change (BECC) 🧗 November 12-15, 2023 📕 Sacramento, CA



Co-Convened by









# **DRIVING TRANSFORMATION**

Behavior, Energy & Climate Change (BECC) 🥖 November 12-15, 2023 丿 Sacramento, CA

# Sufficiency for a Fair and Equitable Energy Transition

November 13, 2022

Max Wei | Staff Scientist/ Lawrence Berkeley National Lab



Stanford Environmental and Energy Policy Analysis Center







# **GHG Emissions still increasing**



Global carbon emission trend (1960-2022) Source: Global Carbon Report

# **Extreme global carbon inequality**



- Extreme GHG emissions inequality
- Top 10% have 48% of emissions, Top 1% 17% (rt.)



## Why big changes beyond technology are needed to ensure a livable, stable planet

- 1.5 °C reached as early as 2028
- Increasing risk of climate tipping points above 1.5 °C and several tipping points may be breached already → much greater risk to previously stable climate system (Holocene Era)
- Current decarbonization approaches that assume BAU growth lack the scale, scope, and speed to decarbonize and stay within safe planetary space
- Rapid and aggressive transformation are required to meet net-zero targets

"Any transition towards sustainability can only be effective if far-reaching lifestyle changes complement technological advancements" Wiedmann et al., 2020, <u>Nature Communications</u>



# Running out of time: new technologies typically take about 70 yrs to scale up



Median for 6 energy supply technologies: 68 years to scale up from core technology Invention, start at 2005 for illustration

Note: 38 years for Nuclear fission with Manhattan Project (all-hands-on-deck \$25B,4 year project in the desert)

#BECC2023

| Four factors to reduce GHGs                                                                                                                                |                                                                                                                                                      |                                                     |                                                                           |  |  |
|------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------|---------------------------------------------------------------------------|--|--|
| Population                                                                                                                                                 | Energy Conservation                                                                                                                                  | Energ                                               | gy Efficiency Clean Energy                                                |  |  |
|                                                                                                                                                            | Total GHG/yr = Pop. x Consumption x<br>= Pop. x <u>Consumption</u> x<br><u>capita</u>                                                                | Efficiency<br>Energy<br>Unit Consu                  | ncy x GHG Intensity<br><u>sy</u> x GHG intensity<br>(GHG per unit energy) |  |  |
|                                                                                                                                                            | <u>Terms</u><br>Pop. = Population                                                                                                                    |                                                     | Objective Consistent with Zero GHG/yr<br>Contained pop. Growth            |  |  |
|                                                                                                                                                            | Consumption per cap e.g. Housing size/ der<br>Diet<br>Car size                                                                                       | ısity                                               | Energy Conservation                                                       |  |  |
|                                                                                                                                                            | Vehicle miles travelled<br>Energy/ unit consumption = therms/sq ft, kWh/ft2<br>gallons or kWh per mile [or 1/MPGGe]<br>CO2, N2O, CH4/ per lb of food |                                                     | Energy Efficiency PGGe]                                                   |  |  |
| embedded emissions per ton of car<br>GHG intensity : kg CO2e/kWhe (carbon intensity of electricity)<br>kg CO2e/therm heating (carbon intensity of heating) |                                                                                                                                                      | car<br>Zero carbon electricity<br>Zero carbon fuels |                                                                           |  |  |

# What is sufficiency? Energy conservation to avoid further breaching planetary boundaries

- Earth beyond six of nine planetary boundaries
- A renewed wake-up call to humankind that Earth is in danger of leaving its Holocene-like state (last 12,000 years of stability)

#### "When you're in a hole, stop digging"



Sufficiency is about reducing absolute demand through changes in behavior, lifestyle, and collective organization through technology and policy innovations while delivering human well-being.

Reducing consumption **IS POSSIBLE** while maintaining good living conditions & well-being.





### Energy savings in an average new single family home since 1975 is much lower when larger home sizes taken into account

- Building codes: ~35% normalized energy savings from 1975 to 2015
- But home sizes increased by 60% and by 75% on a per capita basis
- Larger homes and smaller household sizes reduce energy savings per capita to ~ 9%
- Larger homes mean more stuff
- Suburban, exurban homes can mean more driving

The planet doesn't care about relative savings. The planet cares about absolute GHG reductions.





# Why sufficiency? Many important reasons...

- Potential for deep demand reduction
- Eases the broader decarbonization effort
- **De-risks** future dependence on unproven technologies
- Potential **co-benefits** such as resilience, equity, and well-being
  - **Avoid disruptions** from forced sufficiency
  - **De-risks** future resource conflicts

# How to achieve sufficiency

- Education
- Behavior change (change narratives and shift norms)
- Technology-facilitated sufficiency
- Policies & Regulations (e.g. disincentives for overconsumption)
- Technology, Policy, and Social Innovations
- Paradigm change move away from our consumption-based economy



Increasing Impact?

# Solow and others on growth, well-being, and status

"I do not think that growth itself is or should be a particular objective for a modern economy."

Nobel economist Robert Solow of "Solow Growth Model" (2023)

"The fundamental problem with economics is ... most economists measure human well-being in monetary terms."

Nobel economist Angus Deaton (2023)

"Social esteem or value is connected to what we can consume...Money displayed in terms of consumer goods just becomes a measure of worth"

Juliet Shor, sociologist/economist on why we buy too much (2021)

Need to evolve from sole focus on economic growth & rethink what we value and what societal objectives are



### Material well-being is no guarantee of social progress

#### US is #28 and deteriorated from 2011 to 2020



(Pre-COVID data)

# **Some action areas for greater sufficiency**

| What?                          | How? Examples                                                          |
|--------------------------------|------------------------------------------------------------------------|
| Higher density development     | Less restrictive zoning, ADUs                                          |
| Right sizing, less consumption | Overconsumption fees/taxes, feebates                                   |
| Less driving                   | Urban planning, land use planning                                      |
| Food & Diet                    | Education, school purchasing                                           |
| Metrics, frameworks            | Repairability, extended lifetime, multi-<br>functionality, utilization |



## Food/diet example: A mindset of Ingenuity and Creativity for something delicious

Centenarians:

Sufficiency in materials Plant-based diets Abundance in real human connections and activities & activity

# **Today's discussion**

### How do we quickly achieve much greater sufficiency (& equity) together with energy efficiency and clean energy to ensure the best chance for a stable and livable planet?





# **DRIVING TRANSFORMATION**

Behavior, Energy & Climate Change (BECC) 🥖 November 12-15, 2023 丿 Sacramento, CA

# **Sufficiency as a Strategy for Building Decarbonization**

November 13, 2022

Jeetika Malik | Postdoc Researcher, Lawrence Berkeley National Lab

Convened by:

Stanford Environmental and Energy Policy Analysis Center







#### **Sufficiency in Buildings**

Building Energy Sufficiency is about reducing absolute energy demand through behavioral and lifestyle changes by enabling technology and policy innovations.





Lack of sufficiency policies\* accounted for 52% growth in global residential emissions (IPCC, 2022)

\*considers only floor area reduction

Sufficiency: A state in which people's basic needs for energy services are met equitably and ecological limits are respected. (Darby and Fawcett 2018)

#### Sufficiency is more than behavioral change...

#### **Enabling Technologies and Policies**



Technology: Decentralized building terminals for flexible adaptability (Hu et al. 2023)



Policy development: Amendment to SF building laws in 2013 - minimum dwelling size from 290 sq. ft to 220 sq ft.



#### **Prioritize energy sufficiency for building decarbonization**



Malik et al., 2023. Prioritize energy sufficiency to decarbonize our buildings, Nature Human Behaviour.

### Sufficiency as a response to energy crisis

#### Germany: Issued a set of recommendations

- Public buildings and office buildings to stop heating in transition spaces such as corridors or large halls.
- Got rid of a requirement for tenants to maintain a minimum temperature in apartments.
- City level: reducing street lighting and setting temperature limits in public buildings.

#### Spain: Adopted a radical approach

- Businesses to curb air conditioning at 27 degrees in summer and heating to 19 degrees.
- Install automatic locks to prevent doors from being left open while heating systems are running
- Shopfronts to go dark from 10 p.m.

#### Italy: Drafted an emergency savings plan

- Limiting heating to 19 degrees and cooling to 27 degrees.
- Reducing street lighting at night and closing shops early.

#### Finland: A nationwide energy-saving campaign

- A degree lower: turn down temperatures on internal heating by at least one degree.
- Shorter showers, a call to limit showers to five minutes.



#### **Examples from around the world**



#### French Energy Sobriety Plan

- Aim at reducing 10% our overall energy consumption by 2024.
- Measures- maximum temperature of 19°C in public buildings, dimming or turning off public lights at certain hours, teleworking etc.



**UK Boiler Plus Standard-** improving the way people use energy in their homes, giving people a greater choice to maximize energy efficiency.



**Right to repair-** making repair of appliances an appealing option, extending product lifetime.



**EU 'Save Energy' Directive** 



**India's Mission LiFE** 



#### **Correcting the misconceptions around Sufficiency**

Profound lifestyle changes are required to implement sufficiency and our lifestyles CAN change!

Example, Smartphones changed the way we communicate, inform ourselves, and consume

**Preferences ARE malleable- these changes can be stimulated by a set of levers** Example, Covid-19 radically influenced the lifestyle practices and Video Conferencing tools enabled work-from home and changed workers preferences towards travel, work, etc.

Reducing energy consumption IS POSSIBLE while maintaining good living conditions and well-being.

Example, ≤75 GJ/ person is the energy sufficiency threshold, beyond which higher energyconsuming countries show no or little increase in health, happiness, well-being etc.(U.S. average- 268 GJ/person and global average 79 GJ/person).



#### **Operationalizing Sufficiency...**

- How can we integrate sufficiency with efficiency?
- What are the indicators for measuring sufficiency?
- How can sufficiency be mainstreamed?
- How to leverage technology and policy for operationalizing sufficiency?





# Thank you

Jeetika Malik Jmalik@lbl.gov



### **Fostering Building Energy Sufficiency**

ocaling aboir)

| Stakeholder           | Action Items                                                                                                                                       |
|-----------------------|----------------------------------------------------------------------------------------------------------------------------------------------------|
| Government & Policy   | <ul> <li>Integrate voluntary sufficiency initiatives into the national decarbonization agendas (e.g. <u>EU 'Save Energy'</u> Directive)</li> </ul> |
| Makers                | Revise building codes and appliance standards                                                                                                      |
|                       | • Restructure tax policies and split incentives between landlords and tenants (e.g. New Zealand government's Warmer Kiwi                           |
|                       | Homes program).                                                                                                                                    |
| Building and Energy   | <ul> <li>Integrating the energy and carbon impacts of sufficiency measures into national decarbonization assessment modeling tools</li> </ul>      |
| Scientists            | [such as SCOUT ][                                                                                                                                  |
|                       | • Model impacts of sufficiency measures such as heating, cooling, and reduction in appliance usage in other sectors including                      |
|                       | transportation, food and manufacturing.                                                                                                            |
| Non-profit &          | • Promote energy-sufficient behaviors and energy literacy by harnessing behavior contagion and informational instruments                           |
| community-based       | • Partner with industry, government and science organizations to break down siloed thinking via engaging in true co-design (e.g.                   |
| organizations         | European Futures for Energy Efficiency).                                                                                                           |
| Urban Planners,       | Implement participatory urban planning policies to promote energy sufficiency                                                                      |
| Architects, Designers | Design flexible spaces and create co-living                                                                                                        |
|                       | Consider ecosystem services such as tree shading or urban greening to reduce cooling loads.                                                        |
| Technologists         | <ul> <li>Engage with other disciplines such as social scientists in co-design from the beginning.</li> </ul>                                       |
|                       | • Develop novel solutions such as appliances with higher quality and longer lifetimes, variable power options and improved                         |
|                       | serviceability                                                                                                                                     |
|                       | • Implementing decentralize building systems (e.g. modular design of HVAC systems, portable air conditioners, heating and                          |
|                       |                                                                                                                                                    |

### Extra slide - Proposed panel structure – highlight equity/policies and how to leverage/add value to existing programs & policies

- Welcome
- Presentations Max, Jeetika 25'
- Opening remarks by Susan, Reuven 5-10'
- I. Discussion topics (where/how can behavior-change related programs play a role) 30' including 10' q&A
  - Transportation-related considerations/ programs Reuven
    - Does this include air flights?
  - Buildings-related considerations/ programs Jeetika
  - If time: Food/diet-related discussion/ any programs?
  - Q&A#1 on these topics
- II. Discussion topics (making it cool/ values/ broader impacts) 25' incl. 10' q&a
  - Voluntary simplicity programs Reuven
  - How to make this cool/ mainstream/normalized? Susan
  - If time: Role of values/ethics; "Winners/Losers" & how to manage?
  - Q&A #2 on these topics